O.P.Code: 20EC0409

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular & Supplementary Examinations June-2024 ELECTRONIC CIRCUIT ANALYSIS

		ELECTRONIC CIRCUIT ANALYSIS			
(Electronics & Communications Engineering)					
Time: 3 Hours		Max. Marks: 60			
(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-I			
1	a	Draw the Hybrid-pi model and explain the significance of each and	CO1	L3	4M
		every component in it.		20	-1114
	b	Deduce the expressions for the hybrid π parameters gm, gb'e, gb'c, rbb'	CO4	L4	8M
		and gce.	004	LT	OTAT
		OR			
2		Define Coupling and explain various types of coupling mechanisms	000	т.	4.5.5
_		used in multistage amplifiers.	CO ₂	L2	12M
_		UNIT-II			
3	a	Explain in detail about the basic Amplifiers used in Feedback amplifiers.	CO ₃	L2	6M
	b	Explain Feedback amplifier topologies with necessary diagrams.	CO ₃	L2	6M
		OR			
4	a	Show that negative feedback reduces gain of an Amplifier.	CO ₄	L2	4M
	b	Analyze the effect of negative feedback on Output resistance for Voltage	CO ₅	L4	8M
		series and Current series feedback amplifier.			01,1
		UNIT-III			
5	9	Construct RC phase shift oscillator using BJT and deduce its expression	004	T 4	63 W
9	a	for frequency of oscillations.	CO4	L4	6 M
	h		~~=		
	IJ	Determine the frequency of oscillations when a RC phase shift oscillator	CO ₅	L3	6 M
		has $R=10k\Omega$, $C=0.01\mu F$ and $RC=2.2 K\Omega$. Also find the minimum			
		current gain needed for this purpose.			
		OR			
6		Explain the working of a Crystal oscillator and sketch its characteristics.	CO4	L3	8M
	b	In a transistorized Hartley oscillator, the two inductances are 2 mH and	CO ₆	L3	4M
		20 μH while the frequency is to be changed from 950 KHz to 2050 KHz.			
		Calculate the range over which the capacitor is to be varied.			
		UNIT-IV			
7	a	Classify the Large Signal Power Amplifier based on biasing condition.	CO2	L4	6 M
		Discuss about Transformer coupled Class A Power Amplifier with		L3	6M
		diagram and determine its Maximum efficiency.	COZ	LS	OIVI
		OR			
8		Compare different types of tuned amplifiers with suitable circuit	CO1	τ ο	103.5
Ü		diagrams.	COI	L2	12M
Δ		UNIT-V			
9	a	Define multivibrator? List out the types of multivibrators.	CO1	L1	4M
	b	With a neat circuit diagram explain the working of a collector coupled	CO ₃	L2	8M
		Astable multivibrator and draw the necessary waveforms.			
		OR			
10	a	Explain the operation of the Emitter Coupled Monostable multivibrator.	CO3	L2	8M
	b	List the applications of Monostable multivibrator.	CO1	L1	4M
		*** END ***			

